
Filters

To create any filter via the API, you must create or update a record for your domain with

the answers you plan to use. You must also define any metadata that would be required

for the filters you want to create. Finally, you specify the resource record to which to apply

these changes. You create via a PUT request, and you update via a POST request.

Example

Suppose that you want to create an A record with two answers on the

pulsar.example.com domain that uses the Pulsar Performance Sort filter. In the first

step of this process, we often recommend that you start by defining backup logic, such as

basic geographical steering, in order to have backup logic if Pulsar does not have enough

data to make a decision. To do this, you would:

1. Define the zone , domain , and the record type .

2. Define at least one answer within the record.

3. Add geographic metadata using the meta object for the answer to define the backup

filter.

So far, your command would read as follows:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d

'{"zone":"example.com","domain":"pulsar.example.com","type":"A",

"answers":[{"answer":["1.1.1.1"],"meta":{"georegion":["US-EAST"]},

{"answer":["9.9.9.9"],"meta":{"georegion":["US-WEST"],}}],"filters":[{"filter":"geotarget_re

gional"}

https://api.nsone.net/v1/zones/example.com/pulsar.example.com/A





https://ns1.com/

From here, you would add definitions for the Pulsar metadata, filters, and their

associated thresholds. Changes are showcased in the following example. We have:

4. Added Pulsar metadata to both answers.

5. Defined filters for the 9.9.9.9 answer.

The result should look something like this:

Your performance metric is latency, so you decide to sort in ascending order. The changes

are highlighted in the following sample:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.com","domain":"pulsar.e

xample.com","type":"A",

"answers":[{"answer":["1.1.1.1"],"meta":{"georegion":["US-EAST"],

"pulsar":["job_id": "1uxw9ir"]},

{"answer":["9.9.9.9"],"meta":{"georegion":["US-WEST"],

"pulsar":["job_id": "1uxxo37"]}}],"filters":[{"filter":"geotarget_regional"},{"filter":"pulsar_perfor

mance_sort"}]}]' https://api.nsone.net/v1/zones/example.com/pulsar.example.com/A



$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.com","domain":"pulsar.e

xample.com","type":"A",

"answers":[{"answer":["1.1.1.1"],"meta":{"georegion":["US-EAST"],

"pulsar":["job_id": "1uxw9ir"]},{"answer":["9.9.9.9"],

"meta":{"georegion":["US-WEST"],"pulsar":["job_id": "1uxxo37"]}}],

"filters":[{"filter":"geotarget_regional"},

{"filter":"pulsar_performance_sort","config":{"sort_descending": false}}]

}]' https://api.nsone.net/v1/zones/example.com/pulsar.example.com/A





https://ns1.com/

Pulsar Availability Sort

NOTE

You should set up a proper fallback strategy to ensure that other filters in NS1’s

Filter Chain can intelligently route traffic when there isn’t sufficient performance

telemetry. You should set up your Filter Chain to include these filters before each

Pulsar filter. For example, you could include any of the geotarget filters to fall back

on a geotargeting strategy. If you are distributing traffic across endpoints like

CDNs or distributing traffic across a geographically dispersed infrastructure, use

the shuffle or cost filters to better balance the lowest-cost traffic across your

endpoints.

The following parameter is common to all of the Pulsar availability filters:

PARAMETER TYPE DESCRIPTION

job_id string Required. The ID of the Pulsar job to be associated with this

record.

By default, answers are sorted from lowest to highest value. If there is not enough

performance data available to make a decision, answers are passed through

unchanged, and these decisions are logged as “insufficient” when you view Pulsar

decision data.

Each answer is associated with a specific job_id , which is tied to a probe that

gathers performance and availability telemetry that is used to rate the answer.

The Pulsar Availability Sort filter requires the pulsar input metadata field, which

is a custom data structure. It must be a dictionary, nested inside a list. You can find

the fields of the dictionary above.


https://ns1.com/api#get-view-insufficient-decision-data-for-account
https://ns1.com/

If there is not enough availability data, possible answers are passed through

unchanged, and fallback logic is used. In these instances, the query is then

marked as having “insufficient data” and is added to the associated category

within Pulsar’s reporting dashboard. To learn more about insufficiency reporting,

click here and scroll to the Decisions header. To retrieve decision insufficiencies

via API, visit the NS1 API Documentation endpoint.

 Copy Code Define a Pulsar Availability Sort filter for a record

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":":zone","domain":":child_d

omain","type":":record_type","answers":[{"answer":["9.9.9.9"],"meta":{"pulsar":["job_i

d": ":job_id"]}}],"filters":[{"filter":"pulsar_availability_sort"]}]' https://api.nsone.net/v1/

zones/:zone/:domain/:record_type



Example Request:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.c

om","domain":"pulsar.example.com","type":"A", "answers":[{"answe

r":["1.1.1.1"],"meta":{"georegion":["US-EAST"],"pulsar":["job_id": "1uxw

9ir"]},{"answer":["9.9.9.9"],"meta":{"georegion":["US-WEST"],"pulsa

r":["job_id": "1uxxo37"]}}],"filters":[{“filter”:“geotarget_regional”},{"filt

er":"pulsar_availability_sort"]}]' https://api.nsone.net/v1/zones/exa

mple.com/pulsar.example.com/A



Hide Code Examples



https://help.ns1.com/hc/en-us/articles/360020685833-Viewing-Pulsar-decisions-availability-performance
https://ns1.com/api#get-view-pulsar-decision-data
https://ns1.com/

Pulsar Performance Sort

NOTE

You should set up a proper fallback strategy to ensure that other filters in NS1’s

Filter Chain can intelligently route traffic when there isn’t sufficient performance

telemetry. You should set up your Filter Chain to include these filters before each

Pulsar filter. For example, you could include any of the geotarget filters to fall back

on a geotargeting strategy. If you are distributing traffic across endpoints like

CDNs or distributing traffic across a geographically dispersed infrastructure, use

the shuffle or cost filters to better balance the lowest-cost traffic across your

endpoints.

The following parameters are common to Pulsar performance filters:

PARAMETER TYPE DESCRIPTION

job_id string Required. The ID of the Pulsar job to be associated with this

record.

bias string Only applies to the Pulsar Performance Stabilize and Pulsar

Performance Sort filters. The bias to be associated with this

answer. When Pulsar is comparing different latencies, it will

apply this modifier to this answer to prioritize or de-prioritize it.

Must take the form of a mathematical operator (one of + , - ,

or *) followed by a number which must be a positive float. The

+ and - operators add or subtract the specified number of

milliseconds to the answer’s latency, and the * operator scales

the answer’s latency by the specified amount.



https://ns1.com/

By default, answers are sorted from lowest to highest value. You can set the

sort_descending parameter to true to sort in ascending order to account for

certain metrics that require answers to be sorted from highest to lowest. If there is

not enough performance data available to make a decision, answers are passed

through unchanged, and these decisions are logged as “insufficient” when you

view Pulsar decision data.

Sorting by ascending answers (worst to best) is best when your sort criteria is

latency, because you want to send end users to endpoints that have lower latency

values. On the other hand, if your performance measurement is defined by

bandwidth and MBps, sorting in descending order would be more advantageous,

because you would be sorting from the best value to the worst value.

Each answer is associated with a specific job_id , which is tied to a probe that

gathers performance and availability telemetry that is used to rate the answer.

The Pulsar Performance Sort filter requires the pulsar input metadata field,

which is a custom data structure. It must be a dictionary, nested inside a list. You

can find the fields of the dictionary above.

If there is not enough availability data, possible answers are passed through

unchanged, and fallback logic is used. In these instances, the query is then

marked as having “insufficient data” and is added to the associated category

within Pulsar’s reporting dashboard. To learn more about insufficiency reporting,

click here and scroll to the Decisions header. To retrieve decision insufficiencies

via API, visit the NS1 API Documentation endpoint.

PARAMETER TYPE DESCRIPTION

sort_descending boolean If enabled, the filter bases its sorting behavior on the

worst-performing answer instead of the best, then sorts

the remaining answers accordingly.





https://ns1.com/api#get-view-insufficient-decision-data-for-account
https://help.ns1.com/hc/en-us/articles/360020685833-Viewing-Pulsar-decisions-availability-performance
https://ns1.com/api#get-view-pulsar-decision-data
https://ns1.com/

 Copy Code Define a Pulsar Performance Sort filter for a record

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":":zone","domain":":child_d

omain","type":":record_type","answers":[{"answer":["1.1.1.1"],"meta":{"pulsar":["job_i

d":"1uxw9ir"]},{"answer":["9.9.9.9"],{"pulsar":["job_id":":jobID"]}}],"filters":[{"filter":"puls

ar_performance_sort","config":{"sort_descending": true}}]}]' https://api.nsone.net/

v1/zones/:zone/:domain/:record_type



Example Request:

Example Request:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.c

om","domain":"pulsar.example.com","type":"A","answers":[{"answe

r":["1.1.1.1"],"meta":{"pulsar":["job_id":"1uxw9ir"]},{"answer":["9.9.9.9"],

{"pulsar":["job_id":"1uxxo37"]}}],"filters":[{"filter":"pulsar_performanc

e_sort","config":{"sort_descending": true}}]}]' https://api.nsone.net/

v1/zones/example.com/pulsar.example.com/A





https://ns1.com/

Pulsar Performance Stabilize

NOTE

You should set up a proper fallback strategy to ensure that other filters in NS1’s

Filter Chain can intelligently route traffic when there isn’t sufficient performance

telemetry. You should set up your Filter Chain to include these filters before each

Pulsar filter. For example, you could include any of the geotarget filters to fall back

on a geotargeting strategy. If you are distributing traffic across endpoints like

CDNs or distributing traffic across a geographically dispersed infrastructure, use

the shuffle or cost filters to better balance the lowest-cost traffic across your

endpoints.

The following parameters are common to all of the Pulsar performance filters:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.c

om","domain":"pulsar.example.com","type":"A", "answers":[{"answe

r":["1.1.1.1"],"meta":{"georegion":["US-EAST"],{"pulsar":["job_id":"1uxw

9ir"]},{"answer":["9.9.9.9"],"meta":{"georegion":["US-WEST"],"pulsa

r":["job_id": "1uxxo37"]}}],"filters":[{"filter":"geotarget_regional"},{"filt

er":"pulsar_performance_sort","config":{"sort_descending": fals

e}}]}]' https://api.nsone.net/v1/zones/example.com/pulsar.exampl

e.com/A



Hide Code Examples



https://ns1.com/

PARAMETER TYPE DESCRIPTION

job_id string Required. The ID of the Pulsar job to be associated with this

record.

bias string Only applies to the Pulsar Performance Stabilize and Pulsar

Performance Sort filters. The bias to be associated with this

answer. When Pulsar is comparing different latencies, it will

apply this modifier to this answer to prioritize or de-prioritize it.

Must take the form of a mathematical operator (one of + , - ,

or *) followed by a number which must be a positive float. The

+ and - operators add or subtract the specified number of

milliseconds to the answer’s latency, and the * operator scales

the answer’s latency by the specified amount.

By default, this filter determines which answer has the best performance relative

to the other answers that have also passed through to this filter. After determining

the best or worst performance in each of the answers, the filter then compares its

defined performance threshold to the other responses. If there is not enough

performance data available to make a decision, answers are passed through

unchanged, and these decisions are logged as “insufficient” when you view Pulsar

decision data.

If you sort by the default behavior, the answer that has the best performance

based on the threshold is discarded. This can be useful if, for example, you are

setting a threshold for latency, where a higher value can slow the flow of traffic.

Conversely, your threshold could be based on bandwidth. if you sort in descending

order, the worst-performing answer will be discarded.

For example, assume that you have three endpoints: Endpoint A, Endpoint B, and

Endpoint C. You set the latency threshold to 50%. Endpoint A has a response time

of 160ms, Endpoint B has a response time of 110ms, and Endpoint C has a

response time of 100ms. Of these three endpoints, Endpoint A is dropped,

because it had a higher latency. Endpoints B and C are passed along in the order

that they were passed into the filter. 

https://ns1.com/api#get-view-insufficient-decision-data-for-account
https://ns1.com/

Use other filters, such as geographic filters or shuffle filters before this filter as a

fallback to adequately balance traffic.

Set the stabilization threshold in the filter definition. If you want to set a different

threshold for an answer, define it in the answer metadata.

The Pulsar Performance Stabilize filter requires the pulsar input metadata field,

which is a custom data structure. It must be a dictionary, nested inside a list. You

can find the fields of the dictionary above.

PARAMETER TYPE DESCRIPTION

sort_descending boolean If enabled, the filter bases the cutoff on the best-

performing answer instead of the worst, then

removes all answers below that cutoff instead of

above. The cutoff will be the Pulsar value of the

best answer, minus whatever amount is specified

by the stabilization_threshold , instead of

adding. The default value is false .

stabilization_threshold string Required. Specifies a threshold above or below the

percentage that you specify.

 Copy
Code

Define a Pulsar Performance Stabilize filter and its

configuration for a record



$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":":zone","domain":":child_d

omain","type":":type","answers":[{"answer":["9.9.9.9"],"meta":{"pulsar":["job_id":":job_

id"]}}],"filters":[{"filter":"pulsar_performance_stabilize", "config": {"stabilization_thre

shold": ":threshold_value"}]}]' https://api.nsone.net/v1/zones/:zone/:domain/:recor

d_type





https://ns1.com/

Pulsar Availability Threshold

NOTE

You should set up a proper fallback strategy to ensure that other filters in NS1’s

Filter Chain can intelligently route traffic when there isn’t sufficient performance

telemetry. You should set up your Filter Chain to include these filters before each

Pulsar filter. For example, you could include any of the geotarget filters to fall back

on a geotargeting strategy. If you are distributing traffic across endpoints like

CDNs or distributing traffic across a geographically dispersed infrastructure, use

the shuffle or cost filters to better balance the lowest-cost traffic across your

endpoints.

Example Request:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.c

om","domain":"pulsar.example.com","type":"A", "answers":[{"answe

r":["1.1.1.1"],"meta":{"country":["US"],"pulsar":["job_id": "1uxw9ir"]},{"an

swer":["9.9.9.9"],"meta":{"country":["CA"],"pulsar":["job_id": "1uxxo3

7"]}}],"filters":[{“geotarget_country”},{"filter":"pulsar_performance_

stabilize", "config": {"stabilization_threshold": "10"}]}]' https://api.ns

one.net/v1/zones/example.com/pulsar.example.com/A



Hide Code Examples



https://ns1.com/

The following parameter is common to all of the Pulsar availability filters:

PARAMETER TYPE DESCRIPTION

job_id string Required. The ID of the Pulsar job to be associated with this

record.

The Pulsar Availability Threshold filter determines which answers have the best

availability based on a specified threshold. Answers with the most availability

(based on a defined availability threshold) are kept. Answers that do not meet this

stabilization threshold are removed. The availability threshold that you set is the

value used to determine which answers should be removed.

For example, assume that you have three endpoints (Endpoint A, Endpoint B, and

Endpoint C). You set the threshold to 95%. Endpoint A has an availability of 90%,

Endpoint B has an availability of 97%, and Endpoint C has an availability of 100%.

Endpoint A will be removed, because it’s available less than 95% of the time.

Endpoints B and C are passed through in the existing order they were passed into

this filter.

If there is not enough availability data, possible answers are passed through

unchanged, and fallback logic is used. In these instances, the query is then

marked as having “insufficient data” and is added to the associated category

within Pulsar’s reporting dashboard. To learn more about insufficiency reporting,

click here and scroll to the Decisions header. To retrieve decision insufficiencies

via API, visit the NS1 API Documentation endpoint.

Use other filters, such as geographic filters or shuffle filters before this filter as a

fallback to adequately balance traffic.

Set the threshold in the filter definition. If you want to define different thresholds

for answers, set the threshold for each answer in the answer metadata. 

https://help.ns1.com/hc/en-us/articles/360020685833-Viewing-Pulsar-decisions-availability-performance
https://ns1.com/api#get-view-pulsar-decision-data
https://ns1.com/

The Pulsar Availability Threshold filter requires the pulsar input metadata field,

which is a custom data structure. It always must be a dictionary, nested inside a

list. The dictionary is defined above.

PARAMETER TYPE DESCRIPTION

threshold string Required. Specifies a threshold above or below the percentage

that you specify.

 Copy
Code

Define a Pulsar Availability Threshold filter for an

answer



$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":":zone","domain":":child_d

omain","type":":record_type", "answers":[{"answer":["9.9.9.9"],”meta”:{"pulsar":["job_

id": ":job_id"]}}],"filters":[{"filter":"pulsar_availability_threshold","config": {"threshol

d":":threshold_value"}]}]' https://api.nsone.net/v1/zones/:zone/:domain/:record_typ

e



Example Request:

$ curl -X PUT -H "X-NSONE-Key: $API_KEY" -d '{"zone":"example.c

om","domain":"pulsar.example.com","type":"A", "answers":[{"answe

r":["1.1.1.1"],”meta”:{"pulsar":["job_id": "1uxw9ir"]},{"answer":["9.9.9.

9"],”meta”:{"pulsar":["job_id": "1uxxo37"]}}],"filters":[{“filter”: “shuffl

e”:}{"filter":"pulsar_availability_threshold","config": {”threshold”:”0.9

5”}]}]' https://api.nsone.net/v1/zones/example.com/pulsar.exampl

e.com/A





https://ns1.com/

